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ABSTRACT 

A simple  proof of  the  fundamental   queueing  formuia    L=XW     is 
given which   is  based on  renewal   theory.     The basic assumptions 
which are  needed  are:   (l)  the event   (system  is emptyl   is   recurrent, 
and  (2)  the arrival  and waiting-time mechanisms are  reset   by 
the next arrival   after this  event  occurs. 



A SIMPLE   PROOF  OF:     L = XW 

by 

W.   S.   Jewell 
Operations  Ressarch Center 

Berkeley,   California 

J.D.C.   Little's  proof  [3] of    "L  = XW"    ranks as one of  the most   important 

unifying   results  of  queueing  theory.     However, as  Little himself  has  remarked,   in 

a private communication:     "the author must   be congratulated  for the  rigor of his 

presentation,   but  he  might  have  explained  the   ideas a   little more". 

The  following  proof has  the advantage   that   it   relies  only on  renewal 

theory;   the  somewhat   stronger assumptions which are  needed  are  directly  related 

to usual   queueing  concepts and are,   moreover,  satisfied   in  most  congestion models, 

in this way,   the  construction of  the  proof   reveals  the  essential   simplicity of the 

result. 

NOTATION 

Units  arrive at,   wait     in,  and   then    ^eaye f rom some well-defined   queueing 

system.      The  basic   (nonnegative)   queueing   random variables  are: 

Tl(t)   -- number of units  present   in the  system at  time t   . 

(_<x<t<+0o) 

(l)        T. -- interval between the epochs of arrival of the  (i-l) 

and  i   units  (-oo<i<+a>) 

ID. -- wait in the system of the  i   unit  (_oo<i<oo) 

We assume any interaction of these variables is temporally homogeneous i.e., 

the selection of a time origin is arbitrary. We then select this origin and 

number the units so that the zero      unit arrives at time t = 0 . 



Assuming  that     Tl(t)    will   reach  zero,  with probability one,  at  some  future 

epoch,  we define  the  familiar  related  non-negative  random variables: 

(§")■ v = min(0<n<OD,  11(2^Ty 1 = 0)  --   the number of units 

processed (arrived,  waited, and  left)  during the  first 

busy cycle   (In addition to those   Initially present). 

v 

(2) Y  =2^    T.   -- duration of first   busy ayole. 
1 = 1        ' 

0 = epoch of  last  departure  before time    y  ~" duration of 

fi rst  busy period. 

1 m y-B   -- duration of   idle period pr'\or to arrival  of 

v       unit   (which  starts   new busy cycle). 

Smaller definitions   apply to successive  busy periods, for which     v{0')  =  0. 

ASSUMPTIONS AND  RESULTS 

The  first   basic Assumption   is: 

Assumption 1:     The event £ =  fTl(t)  =  0]   , is a  recurrent  event for any 

(3)      given initial  condition of the  system. 

Thus,   for any  current  condition  of  the  system,     T|(t)     will   become  zero, 

with  probability one,  at  some  future  epoch. 

Theorem 1. 

For any    realization of the random variables     (I)    and    (2)   ,  with 

T|(0")  = 0   and the zero      unit arriving at  time zero: 

v-i t 

y^ a).   = 1     Tl(u)du 
1=0      '      Jn 

v-1 

ik) 2 ^i = I    T1^u^du B 5 t < v , 
1=0      '      JQ 

when  finite. 



Proof: 

Figure  1  shows a  typical   realization of a busy cycle, with    Tl(O-)  =  0    and 

v   ,  Y     finite.    The upper  curve   is   the cumulative  number of arrivals   in     fO»*]   , 

and  the   lower curve    shows  the cumulative number of departures   in the same   in- 

terval   (which   is defined  by the  upper curve,   the     fou.}   ,     and  the   internal 

mechanism of  the system which   rearranges order of departure).    Since    Tl(t)     is 

the  difference   in ordinate  between  these  two curves,   by definition,   the   BUS   in 

(k)   is just  the shaded area  shown  for all     t  e   ÜB.Y)« 

Any  unit   is waiting   in the  system at  time     t     if and only   if   its epoch  of 

arrival   is    5 t   ,    and   its epoch of departure   i?    > t     [3].     In Figure  1, we have 

indicated  the  values of    ^Q»1^»   •••» ^v_]   assuming departure in order of arrival: 

however,   this assumption   is  not  needed to note that  ths  shaded area   is also just 

the sum on the LHS of  (4),   no matter how the waiting times of units   in the system 

are  rearranged,  since each jump   in    Tl(t)    has unity magnitude. 

For an  arbitrary initial busy ayole  '" which    Tl(O-)  = n0>0  ,   (h)   is 

obviously still  correct   if we add  to the sum on the  l.HS the residual waiting 

times of the   items present at  time  zero. 

We now  require  the  following  rather complicated  "reset" Assumption: 

Assumption n :   Whenever   Tl(t)  reaches zero,  tfs arrival and waiting-time 

mechanisms are "reset" by the next arrival,  i.e.   the joint distribution of 

(5) 
^V'T1'T2 Tv  '  ^o'^l'   ***' ^    i'  X^ ^s identical for each busy cycle 

and independent from one busy cycle to the next  (units renumbered for each 

cycle as in Fvgure I). 

We also henceforth exclude  the  trivial   possibility that    E{Y3 - 0  ,  or 

E(v)  =  0   ,  and   interpret     (l/00)  = 0  ,  and   C00/!)   = »  .     Then: 



Theorem n . For arbitrary iniiial conditions,  under Assumptions I and II, 

(6? 

L 

lim E A. 

t 

Tl(x)dx| 

Eiyl 

whenever the  limit on the RES can he interpreted. 

Proof: 

Since     {Tl(t)  = 0}     Is a  recurrent event,   It  recurs   Infinitely often, "Ith 

probability one;     Assumption n  makes  the epochs which start a  busy cycle the 

epochs of a   (generalized)  renewal process'      T](x)dx     Is  then a cumulative» or 

reward process defined on the  renewal   process;  use of the  renewal   theorem  (see, 

for example,   [2]), or of Tauberian  theorems of transform calculus,  leads  to the 

well-known  result  that the  limiting mean  rate of accumulation   Is the mean 

accumulation  per  renewal,  divided by the mean  Interval   between  renewals. 

The only case   in which the limit of   (6)  cannot  be directly  Interpreted   is 

when the  RHS   is of the form    •/» . 

Theorem n  also holds, with probability one, for the  time-average 

rt 
(1/t)   I     T](x)dx    obtained  from any   realization. 

J0 

Theorem III.     For arbitrary initial  conditions,  wider Assumptions I and II, 

t \ /v-1 

(7) Hm jfH-Ete^ 
5 '        ' ' ' EfY} 

whenever the   limit on the RHS can he interpreted. 

Proof: 

Let    Yi»Y9»   •••     be  t:he  durations  of  successive  busy cycles which begin 



J r 
at  epoch«;     ^ = 0   '   r-   = Z-i   Y;   (j  =  1.2,...)   ,   and   let    cp(t)  =  sup  |j   I   F.  < t] 

J       i = 1      ' 
be  the  nuniber of bu;>y  cycles which  start   in     (0,t]   .     Then,   for    t     lorge enough 

so  that    ci?(t)  > 0   , 

cp(t) n (t)+i a H'-'     -y. t coital   iL. 

2^     /      Tl(x)dx <       f r\{x)dx <  J] I    Tl(x )dx 

which   can  be   rewritten as 

cp(t) n 
2    J     HOOdx 

(8) >i_ii 
^T 

7       cp(t)+i rJ. 
Jv.{x)dx      Y J      Tl(x 

t  cp(t) + l 

)dx 

t     - 
cp(t)-H <p(t) 

t 

As  t-"0 , cp(t)-^ with probability one since £    is recurrent; indeed, ^(t)/t  -  l/Efy] 

with probability one (see, for example, [l] p. 51).  Then, with probability one, the 

first term on both sides of (8) approaches E</^ a.> , by the strong law of large 

(i = 0  ') 
numbers, and the second term on the RHS of (8) approaches unity. 

The final result requires: 

Assumption III.    For the distribution of Assumption II,   the unit-average means 

W = 

are both finite. 

Then: 

v-l 

i=0 T = 

v 

!i = l E{V]  _   __  _ 

E{v}  " E{v} 

Theorem IV.     For arbitrary initial conditions,  under Assumptions I, II,  and III, 

(10) W =   1 im  E 
n-«on liS-l T =   1 im   E 

n-'DD 
liE 
(n i = l 



and 

. def  . .  r L =  1 im E 
t-*0 

)dx W 

T 

whenever    T   is nonzero. 

Proof: 

Consider a renewal process In discrete time, n = 0,1,2, ..., where a 

renewal occurs with the Index of an arrival who starts a new busy period.  If 
n 

we consider l uu.     as  the associated   reward  process,   then  the  left-hand 

relation   In  (10)   follows   from  the proof  used   In Theorem  11,  and  the definition   (9) 
n 

similar  remarks apply  to      /    T;   •     00   follows   from   (6)  and   (9),  whenever 

Efv}     Is  finite.     If E[v]   infinite, a  truncation argument will   lead  to   (ll)   in 

the   limit,   providing    T and W    are well-defined. 

The  formula    "L =  XW"     then  follows  by  defining  the   interarrival   rate, 

X  , as    r"    . 

DISCUSSION 

As   in   [3]i   no  specific  assumptions are  needed about   independence of   Inter- 

arrival   Intervals,   number of channels,   service  discipline,  etc.     The  queueing 

system  referred  to may.   In  fact,   be a  portion of a   larger  system,   such   Is   the 

queueing  units only,   the  members  of one  priorty  class  only,  etc. 

The assumption  that  the  event   £    =  {Tl(t)  =  0}     is   recurrent   Is  a  most 

Important one for our analysis,  but   Is satisfied automatically by most 

assumptions  of  stationarity.     Even   if    £    Is  transient,   Equation   (k)   still 

holds  between any  two occurences  of the  event.      If   it   Is  known  that  some  other 

state   Is   recurrent,   then  the  system may have a  "steady-state" component  which 

could   be   removed  from  the  analysis. 

Assumption   11   Is almost  always  satisfied   In  simple  queueing models,   since 
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the arrival   mechanism   is  usually,   although  need  not  be,  assumed   independent of  the 

service mechanism,  and   the  service mechanism   is  usually "reset"  by the  first 

arrival  after an   idle  period.    This assumption can be weakened  even   if  not every 

idle  period  resets   the arrival  and  service  mechanisms;  we only  need   require  that 

the  process  be  reset   with probability one after   some  idle  period   in the  future, 

(and,  hence,  after   infinitely many  such   idle  periods). 

We do not   require  that    Efi}  be  positive,  although  this,   too,   is  usually 

satisfied   in most  queueing  systems.     For example,   in the single-channel   queue 

with   identically distributed  service  times     [a.}   ,  ß =   /    a.      in a  given busy 

i=0 
period,  and a well-known  resu'.  for    W    to be   finite   is  that     Ef(3}  <    Efy}   ,  or 

E{a.}  <T   ;   if the means are equal,  and  not  both   interarrival   ana  service 

distributions are  degenerate,   then    Efi]  =  0   ,   but    € if   >till   recurrent. 

The assumption that    W     is  finite means,  of course,   that    Efß]   is  finite 

if    Efv]   is;   nevertheless,   the  proof does  net   require  that    Efv]   be  finite.     If 

W   is   finite,   but    T     is  not,   then   (ll)   still   holds with    L  =0   .     Note  that 

Assumption   I   may still   hold   (and    L    may even  be  finite)   if both     W    and    T    are 

infinite,   the event      £    then being null-recurrent -     If both    W and    T    are  zero, 

then  (6)   may still   provide the correct   limit  for    L  .     (See Examples,  Below). 

The heart of the  proof    lies   in Theorem  I, which essentially states  that, 

for a  given curve    y(x)    with well-defined beginning and end,   the area can be 

calculated as   fy dx    or Jx dy.  This  result  shows why we stress   tt-je-average 

inventories and   itert-average delays   in operational  models,  but why the concepts 

of   virtual delay, and   inventory seen by an arrival, are not directly  relevant. 

EXAMPLES 

Consider a bulk service mechanism which periodically, every H hours, sweeps 

out aH waiting units.  If units arrive in a Poisson stream, with mean spacing of 



8 

T    hours,   the unit-average delay   is just    W = jH   ,     However,   if    n    units  arrive 

during one  period,  then  by a well-known  result  on the conditional   distribution of 

arrival   epochs,   the  time-average  number   in the system   (over one period,   hence over 

all   time)   Is just    l"   ;   uncondIt loning on the  number of arrivals,  we  find 

L " H/2T = W/T   .     The average   length of  the   idle  period   is     T'    ;   even  though  the 

first  new arrival  after an   Idle  period  arrives during  the middle of some  period of 

length    H   ,   the service mechanism  is  reset   in the  sense that  the distribution of 

wait  for that start-up unit always has density    T' e       (e       -l)"    for 0 < t < H  . 

If the  service mechanism sweeps out  all  but  one   unit whenever   there  are  two 

or more   unIts waiting,   the assumptions are  satisfied,   even on a  first-in-last-out 

basis,   since  the  unit  shoved aside merely has  to wait     e       -1     periods,  on  the 

average,   until   no un;t  arrives,   and  he   is  the  sole  unit  to  be  processed. 

If  the  service mechanism  always leaves  this  zero unit  behind,  Assumption   1 

Is  not  directly satisfied.     However,   the time-average  number   in the  system   is 

L =  1  +   (H/2T)   ,  and the  value of    W   ,  defined by   (10),   is yH + E-jlim u^/nj  = TH  + T' 

hence   (11)   Is still  correct.'   Or,  we may note  that  the event     {Tl(t)  =   1]     is  now 

recurrent,  and can  remove  thic   unit  from analysis  by  "ejecting" him  for an 

arbitrarily  small   interval   of   idle time,  and  then bringing him back   into  the  system. 

If,   in  an M/G/l   queue,     ETa.j   - T   ,   then we  have  both     L and W   ,   as well   as 

Efv},   infinite;    €    is  now a  riull-recurrent event.     As  another example where     v     is 

T),(i=l,2,   ...)   ,   and    w.   = |  (?)I(i=( 
1        o 

system reset at the limit point  t=l . W and T  in (10) are both zero, but 
OP 

ZO). = •* i  and y =   \   .     Then, from (6), L should equal -2 ;  this is correct, 

since there is one unit in the system always, and two units during the intervals of 

length  1/8 , 1/16 , 1/32 , ... beginning at epochs  1/2 , Z/h   , 7/8 , ... 
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